Menu Close
  • Clinical
    • In the Literature
    • Key Clinical Questions
    • Interpreting Diagnostic Tests
    • Coding Corner
    • Clinical
    • Clinical Guidelines
    • COVID-19
    • POCUS
  • Practice Management
    • Quality
    • Public Policy
    • How We Did It
    • Key Operational Question
    • Technology
    • Practice Management
  • Diversity
  • Career
    • Leadership
    • Education
    • Movers and Shakers
    • Career
    • Learning Portal
    • The Hospital Leader Blog
  • Pediatrics
  • HM Voices
    • Commentary
    • In Your Eyes
    • In Your Words
    • The Flipside
  • SHM Resources
    • Society of Hospital Medicine
    • Journal of Hospital Medicine
    • SHM Career Center
    • SHM Converge
    • Join SHM
    • Converge Coverage
    • SIG Spotlight
    • Chapter Spotlight
    • From JHM
  • Industry Content
    • Patient Monitoring with Tech
An Official Publication of
  • Clinical
    • In the Literature
    • Key Clinical Questions
    • Interpreting Diagnostic Tests
    • Coding Corner
    • Clinical
    • Clinical Guidelines
    • COVID-19
    • POCUS
  • Practice Management
    • Quality
    • Public Policy
    • How We Did It
    • Key Operational Question
    • Technology
    • Practice Management
  • Diversity
  • Career
    • Leadership
    • Education
    • Movers and Shakers
    • Career
    • Learning Portal
    • The Hospital Leader Blog
  • Pediatrics
  • HM Voices
    • Commentary
    • In Your Eyes
    • In Your Words
    • The Flipside
  • SHM Resources
    • Society of Hospital Medicine
    • Journal of Hospital Medicine
    • SHM Career Center
    • SHM Converge
    • Join SHM
    • Converge Coverage
    • SIG Spotlight
    • Chapter Spotlight
    • From JHM
  • Industry Content
    • Patient Monitoring with Tech

Closed-loop insulin control for T2DM is feasible in hospital setting

ORLANDO – New research suggests it’s feasible for hospitals to use an automated closed-loop insulin delivery system – free of prandial boluses and carbohydrate counts – to improve glucose control in noncritical patients with type 2 diabetes mellitus (T2DM).

The findings, released at the annual scientific sessions of the American Diabetes Association and via simultaneous publication in The New England Journal of Medicine, don’t examine cost or clinical outcomes. However, “our results suggest this new technology might be another approach to manage in-patient hypoglycemia in a safe and effective way, lead author Lia Bally, MD, PhD, of the division of endocrinology, diabetes, and clinical nutrition, Bern (Switzerland ) University Hospital, said in an interview.

The video associated with this article is no longer available on this site. Please view all of our videos on the MDedge YouTube channel.

For the open-label trial, the researchers recruited 136 adults with T2DM under noncritical care at two hospitals (one in the England and the other in Switzerland). Some patients had undergone surgery, Dr. Bally said, and some others were being treated for systemic infections. Comorbidities were significantly more severe in the closed-loop group, and 43% had sepsis.

All of the subjects required subcutaneous insulin therapy.

From 2016 to 2017, patients were randomly assigned to receive normal subcutaneous insulin therapy (n = 70) or closed-loop insulin delivery (n = 66).

It took about 15 minutes to perform the procedure to implement the closed-loop insulin delivery system, Dr. Bally said. It featured a subcutaneous cannula inserted into the abdomen, a continuous glucose monitor (a device also used in the control group), and a trial insulin pump.

This was not a hybrid system, and it did not include prandial insulin boluses or input of the timing and carbohydrate content of meals. One reason behind the choice to adopt a fully automated system was to relieve the burden on both health care professionals and patients, coauthor Hood Thabit, PhD, of Wellcome Trust–MRC Institute of Metabolic Science, the Manchester Academic Health Science Center, and University of Manchester, said in an interview.

For up to 15 days or until discharge, researchers tracked how much of the time sensor glucose measurements were in a target range of 100 mg/dL to 180 mg/dL.

In the closed-loop group, glucose measurements were in the target range 66 mg/dL ± 17% of the time compared to 42 mg/dL ± 17% in the control group, a difference of 24 mg/dL ± 3% (95% confidence interval, 19-30; P less than .001).

For the closed-loop group, the average glucose level was 154 mg/dL, and it was 188 mg/dL in the control group (P less than .001).

The researchers didn’t find a statistically significant difference between the groups in duration of hypoglycemia or amount of insulin delivered.

None of the patients suffered from severe hypoglycemia or clinically significant hyperglycemia with ketonemia.

There were 18 incidents of clinically significant hyperglycemia events (capillary glucose levels of more than 360 mg/dL) in the closed-loop group, compared with 41 such events in the control group. (P = .03)

Three patients in each group had adverse trial-related device effects.

Of 62 patients in the closed-loop group who completed the trial, 87% reported being pleased by their glucose levels, and all but one reported being happy to have their levels monitored automatically. All 62 patients said they’d recommend the system to others.

Going forward, the researchers hope to launch a multicenter trial that will examine clinical outcomes such as postoperative complications, infections, mortality, and glucose control after hospital discharge, according to Dr. Bally.

The study was supported by Diabetes UK, the Swiss National Science Foundation, the European Foundation for the Study of Diabetes, the JDRF, the National Institute for Health Research Cambridge Biomedical Research Center, and a Wellcome Strategic Award. Abbott Diabetes Care supplied equipment and guidance regarding connectivity, and representatives reviewed the manuscript before submission.

Dr. Bally reported funding from the University Hospital Bern, University of Bern and the Swiss Diabetes Foundation. Dr. Thabit reported no disclosures. Other authors report no disclosures or various disclosures.

SOURCE: Bally L et al. ADA 2018 Abstract 350-OR. Published simultaneously in The New England Journal of Medicine. June 25, 2018

  • 1

    Closed-loop insulin control for T2DM is feasible in hospital setting 

    July 12, 2018

  • 1

    New hypertension guidelines would add 15.6 million new diagnoses

    July 11, 2018

  • 1

    Fluoroquinolones can cause fatal hypoglycemia, FDA warns

    July 11, 2018

  • 1

    Rebleeding and mortality after lower-GI bleeding in patients taking antiplatelets or anticoagulants

    July 11, 2018

  • 1

    Alteplase, aspirin provide similar functional outcomes after nondisabling stroke

    July 10, 2018

  • 1

    SHM expresses support for Fairness for High-Skilled Immigrants Act

    July 10, 2018

  • 1

    Long-term follow-up of monoclonal gammopathy of undetermined significance

    July 10, 2018

  • 1

    More than 16% of ED sepsis patients not admitted to hospital

    July 9, 2018

  • 1

    DOACs’ safety affirmed in real-world setting

    July 9, 2018

  • 1

    ICH: Recent NOAC use associated with lower risk of in-hospital mortality, compared with warfarin

    July 9, 2018

1 … 393 394 395 396 397 … 975
  • About The Hospitalist
  • Contact Us
  • The Editors
  • Editorial Board
  • Authors
  • Publishing Opportunities
  • Subscribe
  • Advertise
  • Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.
    ISSN 1553-085X
  • Privacy Policy
  • Terms and Conditions
  • SHM’s DE&I Statement
  • Cookie Preferences